报告人简介:
余林蔚,男,1978年出生,南京大学教授,博士生导师,入选国家“青年千人计划”,江苏省“双创个人及团队计划”以及江苏省杰出青年基金。1997-2001 毕业于南京大学半导体专业,获得物理学学士学位;2001-2002 参加团中央第三届研究生青年志愿者支教团(宁夏隆德县支教);2002-2007南京大学固体电子与微电子学博士学位;2007-2009法国巴黎综合理工“界面与薄膜物理实验室LPICM”进行博士后研究工作;2009.10入职法国国家科学研究院(CNRS) 终身职位研究员(CR2);20013.6 中组部“青年千人计划”入职南京大学电子科学与工程学院。主要研究方向:1)硅基纳米结构PECVD生长制备、机理和物性调控;2)半导体纳米结构光电特性,可拉伸电子和传感应用;3)高效径向结太阳能电池、锂电存储和钙钛矿器件等。一系列原创性工作多次被学术新闻媒体SPIE Newsroom, APS Physics Focus 和Nature Materials Highlights 报道。相关工作已发表学术论文80余篇,其中以第一或通讯作者在Nature Communications, Physical Review Letters, Nano Letters, Advanced Functional Materials, Nano Energy, Nanoscale, APL, PRB等国际一流学术期刊上发表论文45篇。参加国际会议70余次,其中邀请报告11次。长期担任Appl. Phys. Letters, ACS Nano, Adv. Func. Mat., Adv. Eng. Mat., Nanotechnology, IEEE Trans. series等20余个SCI期刊的审稿人。申请和获得国际PCT发明授权专利2项和国内授权发明专利5项,申请受理国际和国内专利9项。
报告摘要:
Self-assembly Si nanowires (SiNWs), produced by locomotive liquid metal catalyst droplets, are popular building blocks in developing a new generation of nano-electronics, sensors, and energy harvesting and storage applications. Particularly, a programmable morphology, position and composition control of the 1D SiNW building blocks lies in the heart of implementing various functionalities. In this talk, we will first introduce a new in-plane growth strategy that relies on a tamable movement of liquid catalyst droplet to impose a series of unprecedented morphological and compositional engineering of the SiNWs, with yet a precise self-position capability that is highly desirable for upscaling the SiNW-based high performance nanoelectronics. Examples will include high mobility fin-like SiNW transistors, highly stretchable c-SiNW springs and homo or hetero-epitaxial writing growth of in-plane SiNWs. Then, we will continue to address the opportunities of vertical SiNWs array for high efficiency photovoltaic and bio-inspired sensor applications, constructed in a novel single or tandem radial junction solar cell architecture. At the end, a hybrid hierarchical nanowires structure with properly controlled alloy composition and geometric design will be presented, which are explored for high capacity, high rate and durable lithium ion battery.